Interdisciplinary Role of Audiology

Holly L. Burrows, AuD
Therese C. Walden, AuD

Army Audiology & Speech Center
Walter Reed Army Medical Center
Scope of Problem
Mar 03 – Feb 05

• 4189 OIF/OEF soldiers treated at WRAMC
 – 1960 Disease
 – 1159 Non-Battle Injury
 – 1070 Battle Injury

• Army Audiology and Speech Center
 – 371 seen in Audiology; 247 seen in Speech
 – 335 soldiers seen with blast injuries
 – Over 200 soldiers seen with TBI
 – Over 100 soldiers seen with amputations
Scope of Problem
Mar 03 – Feb 05

- 371 soldiers seen by Audiology
- 259 (70%) have some hearing loss
- 212 (57%) with blast injuries:
 - Average age = 28 y/o (18-54 y/o)
 - 70 (33%) had known traumatic injuries (amputation, TBI)
 - 131 (62%) had hearing loss in at least one ear
 - 75 had bilateral hearing loss
 - 56 had unilateral hearing loss
 - 56% SNHL
 - 27% Mixed
 - 17% Conductive
How does Audiology get involved?

• **By consult**
 – From primary attending physician or teams
 – Specialty referrals

• **Proactively**
 – Weekly lists obtained from the TBI and PM&R teams

• **Collaboration with Physical Therapy**
 – Amputee team
 – Weekly screenings
 – SOT
Traumatic Brain Injury (TBI)

- Members of TBI Team
 - Neurology
 - Neuropsychology
 - Social Work
 - Psychiatry
 - Speech Pathology
 - Audiology

- Assessments
 - Team evaluations
 - Ward visits
 - Clinic visits
 - ICU coverage
Physical Medicine and Rehabilitation (PM&R) Team

- Physiatrists
- Physical Therapists
- Occupational Therapists
- Psychiatrists
- Speech Pathologists
- Audiologists
- Nursing
- Nutrition
- Social Work
Audiologic Diagnostics

• Behavioral Tests
 – Air/bone
 – Speech in quiet/noise
 – Hearing aid evaluation

• Electrophysiological Tests
 – OAE
 – ABR
 – ASSR

• Vestibular screening and evaluation
Patient Characteristics

- Types of hearing loss
 - Normal
 - Conductive
 - Ruptured TMs
 - Healed perfs w/ effusion
 - Blood in canal/behind TM
 - SNHL
 - Pre-existing
 - Acoustic trauma
 - Noise exposure

- Co-morbidity
 - Eye damage
 - Spinal cord injury
 - Facial trauma
 - Skull fractures

- Number of visits (1-4)
Treatment

Medical
- Surgical repair
- Acute, on-going care for co-morbidity

Audiological
- Balance
- Tinnitus
- Hearing aids, ALD, CI

Physical Therapy
- Balance
- Vestibular Rehab
- CRM
- Prosthetics/assistive devices
Interdisciplinary Approach to Blast Injury Management

CPT Matthew Scherer
Physical Therapy and VRT
Walter Reed Army Medical Center
Introduction and Rationale

- PTs and Audiologists may be first clinicians to identify oto-vestibular impairments in blast-injured.
- Complex nature of systems involved requires interdisciplinary management and education.
- Balance and hearing deficits often overlooked by providers in complex multi-trauma patients.
- Postural instability, hearing impairment and inner ear dysfunction may be evident up to 6 months post-blast trauma (Coen, 2002).
- Early identification and management can expedite return to duty or high functional level.
Interdisciplinary Management

- **Audiologist**
 - Assess for TM integrity
 - Assess for blast related hearing dysfunction
 - Quantify vestibular loss / dysfunction

- **Physical Therapist**
 - Identify vestibular dysfunction
 - Prescribe and progress VRT
 - Referrals to Audiology and ENT PRN
Incidence of Vestibular and Hearing Pathology among Traumatic Amputees

Post Blast Injury Pilot Study

- Etiology / MOI
 - IED (49%)
 - RPG (19%)
 - Mortar (5%)
 - Other (27%)
- Aural fullness (9%)
- Tinnitus (7%)
- Hearing impairment (18%)
- Subjective report of depression (67%)
- Mean time post injury to full eval = 5-6 mos

(* Scherer, Burrows, et al.*)
Clinical Oto-Vestibular Pathology

- BPPV (Traumatic vs. Idiopathic)
- Post concussive / mild TBI
- Unilateral / bilateral vestibular loss (Ototoxicity vs. Trauma)
- Perforated TMs
- Hearing loss
Physical Therapy Standard of Care
(Amputee Section)

• Initial Physical Therapy Evaluation
 – Motor function, postural stability, gait

• Current Blast Injury Screening Protocol
 – MOI
 – DOI
 – Subjective chief complaint
 – WRAMC blast injury questionnaire
Blast Injury Questionnaire

Physical Therapy Service/ Audiology Service

Descriptive Data
- Name
- Gender
- Age
- Date of Injury (DOI)
- Mechanism of Injury (MOI)
- Deployment (OIF vs. OEF)
- Pre-Existing Conditions
- Location at time of Blast
- Distance from blast

Symptoms
- Vision related impairments
 - Dyoplia
 - Blurring
 - Oscillopsia
- Hearing related difficulties
 - Hearing Loss
 - Aural Fullness
 - Tinnitus
 - Headaches
- Balance related difficulties
 - Dysequilibrium
 - Vertigo
- Depression
Objective Assessment

- Initial screening tests and measures
 - Cervical ROM, Vertebral Artery test
 - Dynamic Visual Acuity (DVA)
 - Head Thrust Test (HTT)
 - Sensory Organization Test (SOT)

- Comprehensive vestibular evaluation
 - Occulomotor exam
 - Dix – Hallpike
 - Gait assessment as appropriate
Ongoing Management and Reassessment

• Vestibular Rehabilitation Therapy (VRT)
 – Adaptation (gaze stabilization exercises)
 – Substitution (bilateral loss)
 – Habituation program (MSQ - Motion Sensitivity)
• Canalith repositioning maneuver (CRM)
• Static and dynamic postural stability training
• Sensory Organization Test (re-evaluations)
• Audiology referral / ENT management
 – VNG
 – Rotary Chair
Sensory Organization Test

- Initially administered upon modified-Independence c. prosthetic limb (Intake)
- Standardized per SOP
- Documents function pre- and post-rehabilitation
- Prognostic, not diagnostic
Sensory Organization Test

- 6 conditions assess visual, proprioceptive and vestibular inputs to balance
- Rates results of patient vs. age / gender matched norms (for able bodied pop.)
- Graphic data on weight bearing and balance strategies used
Assessment and Treatment Challenges

- Medical/Orthopedic Status
 - Cervical stability, multiple lines, weight bearing status, pain control
- Timeliness of assessment
- Sensitivity of low tech bedside exam
- High functioning patient population
- Affective component and compliance
Case Study

• 21 y/o AD USMC, evaluated 4 Jan 05
• IED blast 24 Nov 04 (L BKA), bilateral TM perfs
• C/O dizziness, positional vertigo, hearing loss, tinnitus (AD), bilateral aural fullness
 – c/o motion sensitivity (7 Feb 05)
• AGG: L or R rolling in supine (5-8 sec of vertigo)
• Ease: Rest
• DHI score: 14%
• Audiology evaluation, 5 Jan 05
Initial Audiological Findings

• Hearing
 – Moderate-severe mixed loss (AD), TM perforation
 – Mild conductive loss (AS), reportedly healed TM perforation

• Vestibular
 – Normal ocular motor exam
 – No spontaneous, positional or headshake nystagmus
 – Positive Hallpike right
 – CNT calorics due to perforation AD
 – Normal phase, gain and symmetry on rotary chair
 – Impression: Right P-SCC BPPV
Tests and Measures

- Ocular motor exam WNL
- (+) R HTT
- (+) DVA (3 line loss)
- Dix-Hallpike bil (sxs s. nystagmus <3 sec)
- Sensory Organization Test

- PT Dx:
 R vestibular hypofunction, BPPV resolving
Vestibular Rehabilitation

• X1 viewing exercises for adaptation, habituation
 – 60-90 secs
 – Arms length

• X2 viewing progression

• CRM x 3 sessions
 – R rolling
 – L rolling
Balance and Gait Rehabilitation

- Static postural stability (Romberg, Sharpened Romberg)
- Dynamic postural stability activities
- Gait training
- Proprioception and balance training for L BKA / prosthetic training
Patient’s Outcome

• No c/o increased motion sensitivity, dysequilibrium, vertigo, oscillopsia
• SOT composite score: 76 (above age matched norms in able bodied population)
• Post VRT DHI score: 2%
• Return to full function and sport level activity with prosthesis
• Audiological status
 – Right ear: mixed HL, tympanoplasty scheduled
 – Left ear: healed TM perforation, improved hearing